
LEVELK

Overview of the CHiP Computer

Lawrence Snyder

""LI

> ;X

it OV7id fc.A P"I) '

The BLUE CHiP Project

Depatiflmetn of (;omititer Sitieli es

Mauh Sden es'Building
W(-.-, Iafayrtue, Indiana 47%.7

82 01 06006
.I': 1 1 1 1 , --

Unclass I fled
_2ECUPITY CLASSIFICATION OF THIS PAGE (When Data Enterd)

RfEPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

I. RýPORT NUMBER 12. GOVT ACCRSSION NO. 3. RECIPiltNT'S CATALOG NUMBER

CO-TR-3774
4 Tt r ' 4L. ' ,• jbtIIle) '-S. TYPE OF REPORT 6 PERIOD COVERIED

Overview of the CHiP Computer Technical, Interim

7. AUTHOR(.) I. CONTRACT OR GRANT N'UMSIEP,•')

Lawrence Snyder N00014-80-K-0816
N00014-80-K-0360

5. PERFORMING ORGANIZATiON NAME AND ADDRESS '0' PROGRAM ELEME'NT PRO.ECT,"TASK

Purdue University ARC A WORK UNIT NUMBIERS '

Department of Computer Sciences
West Lafayette, Indiana 47907 Task SRO-100

71- CONTAOLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research August 19, 1981
Information Systems Program IS. NUMBER OF PAGE'-

Arlington, VA 22217 10
14. MONITORING AGENCY NAME & ADDRESS(If different from Conroillinj Office) 11, SECURITY CLASS. (of this report)

Unclassified

ISa.EDECLASSIICATION/DOWNGRADINO

SCHEDULE '
I1 DISTRIBUTION STATEMENT (of t•ise Report)

Distribution of this report is unlimited,

17, DISTRIBUTION STATEMENT (of lthe abstract ^nnerod in Block 20, if different from Report)X . -

ISl. SUPPLEMENTARY NOTES

I______________________
_ .I

IS. KEY WORDS (Contfnue on reverse aide If necessary and identify by block number)

parallel computation, VLSI, configurable architecture, CHiP Processor,
graph embeddings, switch lattice, integrated interconnection structure

ABSTRACT (Continue on reverse aide It necessary ad Identio' by block numbeor)

he main question tinder study is how wide the corridor width should be for the
switch lattice of the Configurable, Highly Parallel (CHiP) computer. (The CHiP
computer family is introduced and its use for parallel algorithm composition is
motivated.) It is argued on the basis asymptotic analysis that a constqnt
corridor width is preferred even though such lattices cannot make full use of
the processor elements for most complex interconnection patterns, e.g.,
(universal interconnection structures like the cube connected cycles and shuffle
exchange, and tor certain simpleO ones, e.g. certain planar graphs.-.---

DD I FAN7 1473 EDITION O' I NOV I OBSOTr Unclassified
S/N 0102-LF-014-660? Unclassified

SECURITY CLASSIFICATION OF THIS iAOR (When Data Entered)

Awl".J.. .. ,

A-e$-TR-377

OVERVIEW OF THE CHiP COMPUTER

Lawrence Snyder

Department of Computer Sciences, Purdue
University, West Lafayette., IN 47907 USA

1. INTRODUCTION

There has been a rush to exploit VLSI technology by build-
ing special purpose devices tailored to a particular complex
algorithm: tree machines for searching, sorting and express-
ion evaluation, systolic array processors for uumerical
calculations, graph and combinatorial algorithms. The
leverage comes from identifying locality (for high integra-
tion) and uniformity (for mass production) in the algorithm.
But the problem remains:

How does one compose these algorithmically specialized
SWprocessors into a larger system?

We must put them together to solve more complex problems.
One solution to the composition problem is to attach a

variety of these specialized processors to a bus, but the
benefits of the devices are lost in wasteful interprocessor
data movement. Alternatively, the algorithmically special-
ized processors could be emulated by microprocessorsI I
connected in a perfect shuffle or other general interconnect- Accession
ion network, but this wastes enormous area, forgoes locality NTIS r•R•xI
and introduces routing delays. The devices could be wired
together, but thic achieves only one composition and the best DX
order for the outputs of one processor is not always the
best order for the inputs to the next. The Configurable, ,
Highly Parallel (CHiP) computer permits the composition of
algorithms in a way that retains the locality and uniformity By_.......
of the special purpose devices while providing flexibility. Distri' .. ,.

2. THE CHIP ARCHITECTURE FAMILY

First we present an overview of the main components and
function of CHiP computers. In subsequent sections the) ¶

ik

tA------

2

capabilities and limitations of the components are discussed
in detail.

InformaZ Overyiew

C-liP architectures are characterized by a switch lattice
connecting a set of homogeneous microprocessors (PEs) that
is a slave to a controlling sequential computer (the control-
ler). The switch tattice is a regular structure formed from
programmable switches connected by data paths. The PEs are
connected to the switch lattice at regular intervals rather
than being directly connected to each other. External
storage devices connect to the lattice at the perimeter jj switches.

IJ

I

(a) Figure I (b)

Figure 1 shows two examples of switch lattices. The
switches are shown as circles, the PEs as squares and the
data paths as lines. Although the PEs and switches are
drawn in roughly the same scale in the figure, the PEs are
substantially greater in both area and capability. The ex-

amples represent a portion of the lattice that may contain
28 to 216 PEs. Current technology permits only a portion of
the lattice to be placed on a single chip, but because of
the characteristics of the architecture discussed below,
"wafer level" fabrication is possible.

The switches are ci-cuit rather than packet switches and
each contains sufficient local memory to store several con-
figuration settings. A configuration setting enables the
switch to establish a direct, static connection between two
or more of its incident data paths. For example, to achieve
a mesh interconnection pattern of PEs for the lattice in

*1- i~-p

3

Figure l(a), we assign North-South configuration settings to
the switch rows and East-West settings to the switch columns.
This pattern is illustrated in Figure 2(a). The same lattice
has been configured into a binary tree pattern in Figure 2(b).

As mentioned in the Introduction one motivation for the
CHiP architecture is to provide a flexible means of composing
algorithms to solve large problems. Accordingly, we can
visualize an algorithm as being divided into a sequence of
phases, each with its own interconnection pattern. The PEs
will each be performing different operations in the various
phases as the emulated devices change.

To prepare for a sequence of phases, the controller loads

the switch memories with the proper configuration settings
to achieve the different interconnection patterns. This is
performed by means of a separate interconnection "skeleton"
that is transparent to the lattice. Typically, the loading
of switch settings takes place in parallel with the loading
of program segments for the phase into the PE memories. The
configuration settings for the same phase are loaded into
the same memory location in all of the switches. For ex-
ample, the settings for a tree could be stored in location 1,
the settings for a mesh in location 2, etc.

On a broadcast command from the controller, all switches
implement the configuration setting in the same location.
With the entire lattice configured, the PEs begin synchron-
ously executing the instructions stored in their local memory
in response to this same broadcast command. PEs need not
know to whom they are connected; they simply execute in-
structions such as READ EAST and WRITE NORTHWEST. The
configuration remains static until the controller broadcasts
another command causing a different configuration setting to
be implemented. The new interconnection pattern for the next

0 0 0 0 0 0 0 00 0 00

• ~oo
0 0 0
0

0000 0 00

0 0 000 , 00 0 00 0 0 0 0 0 0 0 0 0 0

(a) F[gux'c' (b)

ja

4

phase is established in a single logical step and PE in-
struction execution resumes. (Detailed examples of this use
of configurability are given in Gannon aud Snyder 1981.)' Clearly, members of the family of CHiP architectures can
differ in many ways: complexity of the lattice, functional
com-lexity and memory capacity of the PEs, number of PEs,

I interconnection capability and memory capacity of the I
switches, width of the data paths, geometry and controller
capacity. We next discuss some of these possibilities.

Processing elements

The computational capacity of the PEs largely determines
the degree to which a CHiP machine is a general purpose
computer and is thus influenced by the intended applications.
For example, if the CHiP computer is to be used to simulate
the action of other VLSI circuits for design verification
purposes, PEs with a few dozen gates suffice to emulate a
node of the circuit. Numerical algorithms provide an en-
ormous class of applications requiring a floating-point
arithmetic capability and substantial (100-200 instruction)
programs. Since complex functions can be implemented in
software, our intuition says that memory capacity is more
important than functional capability. Early experience with
CHiP algorithm design corroborates this view. We have been
able to make effective use of a technique Schwartz (1980)
calls "summarizing", and therefore we recommend that PEs
used in an n x n lattice have sufficient memory to store at
least n data values.

Switches

The operation of the switches is very simple and they
might be implemented entirely with "steering" or "pass"
transistors were it not necessary to intersperse drivers.
Even so, they occupy area that is only a small factor larger
than the minimum, m5, where m is the number of wires of the
data path. The number c of memory locations for storing
configuration settings will be small (<16) and the degree d,
which is the number of incident data paths, will be eitJ Br
four or eight.

The crossover capability of a switch refers to the number
of distinct data path groups that can be independently
connected by a switch. We refer to "groups" rather than
path pairs since fan-out is possible, i.e. more than two
directions can be connected simultaneously. The crossover
number g varies from I (no crossover) to d/2, and will

-- - -- - - - - - -- - - - - - - - -.

5

generally be two since it appears to be difficult to make
very effective use of more crossovers.

The total number of bits required at a switch is thus, dajc,
one for each direction for each crossover group for each con-
figuration setting. Though this number is modest, it can be

reduced by permitting settings to be assigned by the con-
troller while the P~s are executing. This "asynchronous
loading" capability exploits the fact that configurations
often differ in only a few positions.

La tti ce

The lattice structure determines the efficiency of PE
utilization and the convenience of embedding interconnection
patterns. The crucial variable is the exrridor width, w.,
the number of data paths separating two adjacent PEs.
(Recall that a single data path is formed from m wires.)

Figure l(a) shows a W-1 lattice while Figure 1(b) shows a

w=2 lattice. Both lattices are uniform in the sense that all4
P~s are separated by the same size corridors, but it is pos-
sible to have a lattice with a variety of corridor widths.
For example, the lattice of Figure 1(b) could be enhanced by
enlarging the width of every fourth row and column of cor-
ridor pairs to a width of 4. Such an approach permits the
lattice to be interpreted at several "levels" of detail: as
an n/4 x n/4 PE lattice with corridors of width 4 composed of
logical processors that are a 4x4 lattice with w=2, or as an
nxn lattice with W-2, by ignoring two of the four added
corridors.

To see the impact of a particular choice of corridor
width, we must study how the lattice hoats an interconnection
pattern graph. There are two considerations when hosting a I
pattern graph: PE degree and edge density of complex inter-
connection paths. The matter of the PE degree, Lhe number of
incident edges, can be dismissed easily. If the pattern
graph vertices, which correspond to PEs, have a degree in
excess of the four or eight degree P~s typically provided,
then we simply couple PF~s together to give a larger "logical
PB". For example, two adjacent degree four PEs can be log-
ically coupled together to give a degree six PE; one of them
could simply act as a buffer. Although this reduices the
number of available PEs, the problem arises infrequently,
since few processes require such large numbers of operands
simultaneously. When few operands must be received from many
possible sources, the large degree problem can be solved with
the fan-in provided by the switches.

The second problem is that the graph's edge density may

.

6

I
require many different data paths to pass through a region of
the CliP lattice. In theory, even a one corridor lattice can
host such a pattern, but to do so may require PEs to be Lin-
used in the region in order to provide sufficiently many
paths. For example, Figure 3 shows an embedding of K4,4 into

a degree eight version of the lattice of Figure l(b). In
order to provide paths for the sixteen edges, the center four
PEs must be unused. Increasing the corridor width obviously
raises PE utilization.

0 a o 0 a 0 0 o 0 a 0

0 0 0 0 0 0 C0 0 0 0 0 0

It also lowers the PE density. The fact that the number of
PEs is linear in the area of this lattice means that PE ut-
ilization is inversely related to the area --equired to embed
the pattern graph in the plan~e. Graphs requiring a nonlinear
area will underutilize PEs just as circuits described by
these graphs are composed nv~stly of wire, (Thompson 1980).

The decision on how wide corridors must be is influenced
by the intended interconnection patterns and how economical-
ly necessary it is to maximize PE utilization. Fortunately,
many algorithmically specialized processors developed for
VLSI Implementation have linear area interconnection graphs
and can be hosted with optimal or near optimal PE utiliza-
tion when the corridor width is only two. But Lo host any
planar graph in an nm PE lattice, an (average) width pro-
portional to at least (Zog n)il will be necessary, (Leighton

It

1981), to achieve optimal PE utilization. (Valiant, 1981
shows that Zog n width_ suffices.) For optimal utilization
in more complex pattern embeddings such as the shuffle-
exchange graph, a much larger width is required (e.g.
proportional to at least n/log n, Thompson 1980). These
lattices with nonconstant corridor width have sublinear PE
density per unit area.

7

The impact of these results is as follows.

Up to constant multiplicative factors, the CHiP
lattice with constant corridor width uses the silicon
area as efficiently as direct VLSI implementations
for all pattern graphs; CHiP lattices with constant:
corridor width as well as such universal interconnect-

ion structures as the shuffle-exchange graph cannot use
the silicon area any more efficiently than direct VLSI
implementation or constant corridor CHiP lattices and
they are less efficient for linear area pattern graphs.

Evidently, a constant width corridor is indicated.
The estimates of the previous paragraphs are based on

asymptotic results involving large constant factors and refer
to a purely planar model. They can serve as guidelines (es-
pecially for "wafer level" fabrication), but more practical
considerations are likely to influence the implemented
lattice structure. For example, if only a small portion of
the lattice fits on a single chip, the chips must be wired
together which gives an opportunity to implement a complex
nonlocal intarconnection structure in the "third dimension".
"Pin" limitations will also influence the decision. It may
be more efficient to use the pins to increase the parallelism
of data transmission using wide data paths through a narrow
corridor than to use them for a wide corridor of narrow data
paths. The benefits would accrue to the linear area pat-
terns.

Efficient Embedding of In-,erconnection Patterns

Even though an interconnection pattern graph may have a
linear area embedding in the plane, a direct translation of
that embedding into the C1iP lattice may not be perfectly
efficient. For example, the well known "hyper-H" planar
embeddinc of a binary tree (Mead and Conway, 1980), when
literally translated into a lattice of corridor width one
leaves nearly half of the PEs unused. The reason is that
unlike plain silicon, the CHiP lattice provides predetermin-
ed sites for the PEs which must be respected.

It is possible (Snyder 1981) to have a perfectly efficient
erbedding for the complete binary trees in a lattice for

which W=1. That is, a 2 k x 2 PE lattice can host a complete

binary tree with 2k- 1 nodes. Figure 4 illustrates a portion
of this intricate, but straightforward, embedding.

Although the embedding of Figure 4 is efficient in terms

--

-1
|R

of PE utilization, there are other considerations to be
weighed. In particular, propagation delay is an important
problem and this embedding contains paths of length pro-
portional to n for an nxm PE lattice. There are planar
embeddings for complete binary trees with paths of length
proportional to n/Zog n (Paterson et aZ.), which is the best
possible. These embeddings can be made just as efficient in
terms of PE utilization and would probably be preferred.

0 0 0) 0 0 0 o 0 0 0 0, 00

0 uH~ loJ H~l 1

00 0 a 0 0 a
0 11 l- 0l [o Fl 1 -I - lo

0 L.-) L t 0

00

0 0 00 0

0 0 ~ 1

0{ 0
0~ U-~- -*-{1

0 0 0 00 0 0 0 0 0

0 Li 0 [J--4-4 0 D_)_ ~-~--1 o) L1 ic

I+ 3. CONCLUSIONS

we have introduced the CHiP architectures and discussed
some of the design decisions influencing their structure.
The multiphased processing paradigm was discussed as a meansr of using configurability to compose algorithms. But there H
is another way to use configurability to compose algorithms.

Pipelined algorithms are best composed by coupling the
PEs of one algorithm with those of the next in such a way

* that the outputs of the first become inputs to the second.
The CHiP processor supports that composition method easily.
Each of the algorithms is embedded in a region of the lat-
tice so that the inp'it side(s) of the first region is
adjacent to the perimeter and the output side of this and
subsequent processor arrays are adjacent to their

I • . . ,, i • • : '•+• I• ,-+ .. +"+• : '•%
• ' I I

S~~~~~--.:- lI '--11-1 . . .

9

successor algorithm's PEs. This approach uses "intraphase"
configurability (as opposed to the "interphase" configur-
ability of the previously mentioned paradigm) to arrange for
the embedding and connectivity of the processor arrays and
to "scale" them since their size often depends on a parameter
of the input. The controller can make these modifications at
loading time. A complete example of composinq the Kung and
Leiserson systolic arrays (Mead and Conway, 1980) is given in
Snyder, 1981.

obviously, the CHiP architecture is very fault tolerant.

Once a faulty PE, switch or data path is discovered, it is a
simple matter to configura around the offending element(s).
Perhaps the most effective way to use this facility is for
wafer level fabrication. With this approach the wafer is
viewed as a enormous chip where the dicing corridors are used
for data path corridors. A wafer is accepted if, after test-
ing, a regtilar kxk sublattice was found to be functional.
Onboard mapping circuitry could map the addresses of the
logical PEs and switches onto the functional elements of the
wafer.

In summary, the CHiP architecture provides flexibility for
algorithm composition. Accordingly, the many desiqn par-
ameters left unspecified in this discussion will be set
based on our ongoing research into algorithm design for theCHiP architectures.

ACKNOWLEDGEMENTS

It is a great pleasure to thank my colleagues, Dennis
Gannon, Janice Cuny, George Holober, Ching Hsiao, Paul
McNabb and Kye Hedlund, who have contributed in innumerable
ways to these ideas. The work described herein is part of
the Blue CHiP project which is supported in part by Office
of Naval Research Contracts N00014-80-K-0816 and
N00014-81-K-0360. The latter is Task SRO-100.

REFERENCES

Gannon, D.B. and Snyder, L. (1981), "Linear Recurrence
Systems For VLSI% The Configurable, Highly Parallel
Approach," Int'l Conference on Parallel Processing,
(to appear)

Leighton, F.T. (1981), "New Lower Bound Techniques For VLSI"
Twenty second Ann. Symposium on the Foundations of Com-
puter Science, IEEE (to appear)

......................... .

10

Mead, C. and Conway, L. (1980) Inthrobotion to VLSI SyetesM
Addison-Wesley

Paterson, M.S., Ruzzo, W.L. and Snyder L. (1981) "Bounds
on the minimax edge length for complete binary trees,"
Thirteenth Annual Symposium on the Theory of Computing,
ACM

Schwartz, J.T. (1980) "Ultracomputers", ACM4 Transactions
Programming Languages and Systems

Snyder, L. (1981) "Introduction to the Configurable, Highly
Parallel Computer," Purdue University Tech. Report 351

Thompson, C.D. (1980), "A Complexity Theory for VLSI," Ph.D.
Thesis, Carnegie-Mellon University

Valiant, L.G. (1981)"Universality Considerations for VLSI
Circuits", IEEE Transactions on Computers

i .

Official Distribution List

Defense Documentation Center Defense Advanced Research
Cameron Station Projects Agency
Alexandria, VA 22314 Attn: IPTO

1400 Wilson Boulevard
Office of Naval Research Arlington, CA 22209
Arlington, VA 22217

Information Systems Program (437) ONR Resident Representative
Code 200 Ohio State University
Code 455 Research Center
Code 458 1314 Kinnear Rd.Columbus, Ohio 43212

Office of Naval Research
Eastern/Central Regional Office
Bldg. 114 Section D
666 Summer St.
Boston, MA 02210

Office of Naval Research
Branch Office, Chicago
536 South Clark St.
Chicago, ILL 60605

Office of Naval Research
Western Regional Office
1030 East Green St.
Pasadena, CA 91106

Naval Research Laboratory
Technical Information Division, Code 2627
Washington, DC 20375

Dr. A.L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps (RD-I)
Washington, DC 20380

Naval Ocean Systems Center
Advanced Software Technology Division
Code 5200
San Diego, CA 92152

Mr. E.H. Gleissner H
Naval Sh4p Research & Development Center
Computation and Mathematics Department
Bethesda, MD 20084

Capt. Grace M. Hopper (008)
Naval Data Automation Command
Washington Navy Yard
Bldg. 166
Washington, DC 20374

